Vektor Matematika : Pengertian, Rumus, Operasi Vektor, Contoh Soal

Diposting pada

Vektor Matematika : Pengertian, Rumus, Operasi Vektor, Contoh Soal – Dalam materi kali ini, kita akan membahas tentang rumus matematika vektor, pengertian besaran vektor, pengertian besaran skalar, perkalian skalar dengan vektor, sifat-sifat skalar dengan vektor, penjumlahan dan pengurangan vektor, notasi vektor, dan panjang vektor.

Vektor-Matematika
Vektor Matematika

Pada tahun 1827 Mobius mempublikasikan Der Barycentrische Calcul, sebuah buku geometri yang mengkaji transformasi garis dan irisan kerucut. Fitur baru dalam hasil karya ini adalah pengenalan koordinat barycentric. Diberikan sembarang segitiga ABC maka jika garis berat a, b, dan c berturut-turut dilukis pada A, B, dan C maka dapat ditentukan sebuah titik P, yaitu titik berat segitiga. Mobius memperlihatkan bahwa setiap titik P pada bidang datar ditentukan oleh koordinat homogen [a,b,c]. Garis – garis berat yang diperlukan diletakkan pada A,B, dan C untuk menentukan titik berat P. Yang terpenting disini adalah pandangan Mobius tentang besaran berarah, sebuah pemunculan awal mengenai konsep vektor.


Baca Juga Artikel Yang Mungkin Berhubungan : Rumus Kuartil, Desil, Persentil, Menghitung Simpangan Rata Rata Dan Baku Beserta Contoh Soal


Pada tahun 1837 Mobius mempublikasikan buku tentang statika di mana ia secara gamblang menyatakan idenya tentang penyelesaian masalah besaran vektor bersama dengan dua sumbu koordinat. Di antara dua hasil karya Monius ini, sebuah karya tentang geometri oleh Bellavitis dipublikasikan tahun 1832 yang juga membahas besaran yang merupakan vektor. Odjek dasarnya adalah segmen garis AB dan ia memandang AB dan BA sebagai dua objek yang berbeda. Ia mendefinisikan dua segmen garis sebagai ‘equipollent’ jika keduanya sama panjang dan paralel. Dalam notasi modern, dua segmen garis adlah equipollent jika keduanya mewakili dua vektor yang sama.


Pengertian Vektor

Vektor adalah besaran yang mempunyai besar/nilai dan arah. Secara geometris vektor digambarkan sebagai ruas garis berarah, dengan panjang ruas garis menyatakan besar vektor dan arah ruas garis menyatakan arah vektor .

Dalam matematika vektor digambarkan dalam bentuk garis lurus yang mempunyai panjang dan arah.

Penulisan nama vektor :

  1. dengan menggunakan huruf kapital harus menggunakan dua huruf, sebagai contoh vektor AB
  2. adalah vektor yang panjangnya sama dengan panjang ruas garis AB dan arahnya dari A ke B.
  3. sedangkan dengan huruf kecil hanya satu huruf, sebagai contoh a̅

Sebagai Contoh

Contoh Penulisan nama vektor

 

 

 

 

 

 

Pembahasan Contoh Penulisan nama vektor

 

 

 

 

 

 

 

 

 


Baca Juga Artikel Yang Mungkin Berhubungan : Rumus Kerucut : Volume Luas Permukaan, Tinggi, Dan Gambar


Jenis Jenis Vektor

  • Vektor Nol adalah vektor yang besarnya nol satuan dan arahnya tak tertentu.
  • Vektor Posisi adalah Posisi sebuah titik partikel terhadap sebuah titik acuan tertentu dapat dinyatakan dengan sebuah vektor posisi.
    Contoh Vektor Posisi
  • Vektor Basis adalah vektor yang panjangnya satu satuan dan arahnya searah dengan sumbu koordinat.

Contoh Vektor Basis

 

  • Vektor satuan Suatu vektor yang panjangnya satu satuan. Vektor satuan dari Vektor satuan Vektor satuan 2

Baca Juga Artikel Yang Mungkin Berhubungan : Rumus Volume Tabung : Luas Permukaan, Luas Selimut, Tinggi, & Contoh Soal


Secara aljabar sebuah vektor dapat dinyatakan dengan salah satu cara, sebagai berikut :

  1. Vektor kolom ( matriks kolom )
    Vektor kolom
  2. Vektor baris ( matriks baris )
    Vektor baris
  3. Vektor basis
    Vektor basis

Contoh Soal Vektor Kolom, Baris dan Basis Dan Jawabannya

Contoh Soal Vektor Kolom Baris dan Basis


Baca Juga Artikel Yang Mungkin Berhubungan : 54 Gambar Jaring jaring Balok, Rumus, Dan Cara Membuat


MODULUS VEKTOR ( PANJANG VEKTOR )

Jika A (x A , y A , z A ) dan B (x B , y B , z B ) maka panjang vektor OA adalah OA atau a , yaitu :

PANJANG VEKTOR

 

 

 

 

 

 

Contoh Soal PANJANG VEKTOR Dan Jawabannya

Contoh Soal PANJANG VEKTOR Dan Jawabannya

 

 

 

 

 

 

 

 

 

 


Baca Juga Artikel Yang Mungkin Berhubungan : Jaring Jaring Kubus : 11 Gambar Pola Dan Cara Membuat


PEMBAGIAN RUAS GARIS VEKTOR

Diketahui ruas garis AB. Titik P terletak pada ruas garis tersebut sedemikian hingga AP : PB = m : n . Maka :

PEMBAGIAN RUAS GARIS VEKTOR

 

 

 

 

 

 

 

Pada perbandingan AP : PB = m : n ,

  1. Jika P terletak di antara A dan B , maka m > 0 dan n > 0 .
  2. Jika P terletak pada perpanjangan AB , maka m < 0 dan n > 0 .
  3. Jika P terletak pada perpanjangan BA , maka m > 0 dan n < 0 .

Contoh Soal PEMBAGIAN RUAS GARIS VEKTOR Beserta Jawabannya

Contoh Soal PEMBAGIAN RUAS GARIS VEKTOR Beserta Jawabannya

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


OPERASI VEKTOR

1. Perkalian Vektor Dengan Bilangan Riil

Perkalian Vektor Dengan Bilangan Riil

 

 

 

 

Contoh Perkalian Vektor Dengan Bilangan Riil

Contoh Perkalian Vektor Dengan Bilangan Riil

 

 

 

 

 


2. Penjumlahan Vektor

Diketahui vektor a dan b . Secara geometris vektor a dan b dapat dijumlahkan dengan cara sebagai berikut :

Penjumlahan Vektor

 

 

 

 

 

 

 

Penjumlahan Vektor 2

 

 

 

Contoh Penjumlahan Vektor

Contoh Penjumlahan Vektor

 

 

 

 

 

 

 

 


3. Pengurangan Vektor

Diketahui vektor a dan b . Pengurangan vektor ab dapat  dinyatakan  dalam  bentuk penjumlahan vektor a + ( – b ) ,  dengan  vektor  – b  adalah  vektor  yang  panjangnya  sama dengan vektor b dan arahnya berlawanan dengan vektor b .

Contoh Pengurangan Vektor

 

 

 

 

 

 

 

 

Contoh Soal Dan Jawaban Pengurangan Vektor

Contoh Soal Dan Jawaban Pengurangan Vektor

 

 

 

 

 

 

 


PERKALIAN SKALAR DUA VEKTOR

PERKALIAN SKALAR DUA VEKTOR adalah Perkalian skalar antara vektor a dan b adalah a · b , dengan :

PERKALIAN SKALAR DUA VEKTOR

Contoh Soal PERKALIAN SKALAR DUA VEKTOR Dan Jawaban

Contoh Soal PERKALIAN SKALAR DUA VEKTOR Dan Jawaban

 

 

 

 

 

 

 

 

 

 

 

 

 

 


SUDUT ANTARA DUA VEKTOR

Jika a adalah sudut antara vektor vektor a dan b , maka nilai a dapat ditentukan dari :

SUDUT ANTARA DUA VEKTOR

 

 

CONTOH SOAL SUDUT ANTARA DUA VEKTOR DAN JAWABAN

CONTOH SOAL SUDUT ANTARA DUA VEKTOR DAN JAWABAN


PROYEKSI VEKTOR ORTOGONAL

GAMBAR PROYEKSI VEKTOR ORTOGONAL

Proyeksi ortogonal vektor a pada vektor b adalah bayangan tegak lurus’ dari vektor a pada vektor b

 

 

 

Ada dua macam proyeksi vektor ortogonal , yaitu :

 

1.  Proyeksi vektor

 Proyeksi vektor ortogonal a pada vektor b hasilnya adalah vektor ‘bayangan’ nya , yaitu vektor c , dengan :

Proyeksi vektor

2.  Proyeksi skalar ortogonal

Proyeksi skalar ortogonal a pada vektor b hasilnya adalah panjang ( modulus ) dari vektor ‘bayangan’ nya , yaitu c , dengan :

Proyeksi skalar ortogonal

Contoh Soal Proyeksi vektor Proyeksi skalar ortogonal Dan Jawabannya

Contoh Soal Proyeksi vektor Proyeksi skalar ortogonal Dan Jawabannya


Contoh Soal Vektor

Tipe Basic

Contoh Soal Vektor

Contoh Soal Vektor 2

Contoh Soal Vektor 3

Jawab

Jawab Contoh Soal Vektor 3

Contoh Soal Vektor 4

Contoh Soal Vektor 5

Contoh Soal Vektor 6

Contoh Soal Vektor 7Contoh Soal Vektor 8

 

Itulah Pembahasan Lengkap Mengenai Vektor Matematika, Semoga Bermanfaat Para Pembaca Setia Guru Pendidikan 🙂


Sumber Contoh Soal
http://aksiomaid.com